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Bacteria use a wide variety of flagellar architectures to navigate

their environment. While the iconic run-tumble motility strategy

of the peritrichously flagellated Escherichia coli has been well

studied, recent work has revealed a variety of new motility

behaviors that can be achieved with different flagellar

architectures, such as single, bundled, or opposing polar

flagella. The recent discovery of various flagellar gymnastics

such as flicking and flagellar wrapping is increasingly shifting

the view from flagella as passive propellers to versatile

appendages that can be used in a wide range of conformations.

Here, we review recent observations of how flagella shape

motility behaviors and summarize the nascent structure-

function map linking flagellation and behavior.
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Introduction
While most bacteria swim by rotating flagella, helical

appendages driven by a rotary motor (Figure 1a), species

differ vastly in their flagellar architectures, that is, the

number, position, and shape of flagella [1] (Figure 1b).

The growth cost incurred by flagellar expression [2–4]

indicates that flagellation is likely subject to strong natu-

ral selection, yet an understanding of the motility beha-

viors that are enabled by specific flagellar architectures

and their possible adaptive values is only beginning to

take shape.

Pioneering work on the peritrichously flagellated Escher-
ichia coli revealed that its trajectories consist of near-

straight segments called runs and brief turning events

called tumbles [5]. Runs are driven by all flagella rotating

counterclockwise (CCW) in a bundle, and tumbles occur

when one or more flagella transiently rotate clockwise
www.sciencedirect.com 
(CW). Other species achieve turns by pausing flagellar

rotation [6] or desynchronizing flagellar rotation by vary-

ing rotation speeds [7] (Figure 1c). In many non-peritri-

chous species, however, either direction of flagellar rota-

tion results in locomotion, and turns result from a change

in rotation direction. Polar monotrichous species, which

include the majority of marine bacteria, were long

thought to be constrained to a run-reverse motility pattern

[8] (Figure 1d). In 2011, careful observations surprisingly

revealed that Vibrio alginolyticus actually performs a multi-

step pattern where turning events alternate between

reversals and turns by a much smaller angle, so-called

‘flicks’ [9��] (Figure 1e). This unexpected discovery of a

novel behavior in a well-studied organism with the sim-

plest flagellar architecture evoked a fresh look at the

possible range of flagellar motility behaviors and sparked

a new era of discovery.

Here, we review the emerging understanding of how

flagellar architectures and gymnastics shape bacterial

swimming motility behaviors since the discovery of the

‘flick’ in 2011. We highlight flagellar ‘wrapping’ reported

in 2017, and other recent reports of novel behaviors. We

limit ourselves to motility driven by external flagella as

recent reviews [10,11] cover spirochete motility driven by

internal, periplasmic flagella.

Focus on the hook
Flicking has since been observed in a wide range of

species with single polar flagella, including the freshwater

bacterium Caulobacter crescentus [12], the saprophyte She-
wanella putrefaciens [13], the human pathogen Vibrio cho-
lerae (Grognot et al., unpublished) and many marine

bacteria [14��]. Compared to a run-reverse scenario, flicks

enable the bacteria to explore new directions much more

rapidly, and the strategy has been argued to enable rapid

exploitation of transient resources that are typical of

pelagic environments [15,16].

The discovery turned the focus to a mechanical element

that had received little attention so far: the flagellar hook.

The flagellar hook is a short, flexible segment of the

flagellum that connects the rigid flagellar filament to the

rotary motor. It is thought to act as a universal joint [17]

that enables the rotary motor to transmit torque to the

filament, even when their axes of rotation are not aligned.

The flick revealed another role for the hook: Son et al.
showed that flicks result from a mechanical buckling

instability in the flagellar hook [14��]. When the cells

swim backward, the hook is stretched out, but when the
Current Opinion in Microbiology 2021, 61:73–81
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Basics of flagellar motility. (a) Flagellar motility is driven by a flagellar motor (purple), embedded in the cell envelope, rotating the helical flagellar

filament (green) and the cell body against each other. The flagellar hook (yellow) functions as a universal joint that can transmit torque from the

motor to the filament even when their axes of rotation are not aligned. CCW rotation (viewed from the flagellum looking towards the cell body) of a

left-handed flagellum results in the flagellum pushing the cell. (b) Common flagellar architectures and their nomenclature. Some species can

express more than one set of flagella. (c–e) Examples of common bacterial motility patterns and species that exhibit them. The flagellated pole is

lagging during solid and leading during dashed trajectory segments.
cell reverses direction, the hook is compressed until it

buckles. The resulting misalignment of cell body and

flagellum leads to the cell being pushed off course and

swimming off sideways in a new direction (Figure 2a).

Simulations indicate that hook flexibility has opposite

effects on the stability of swimming in monotrichous and

peritrichous species [18,19], and recent experimental

work shows that the length of the hook is likely optimized

for maximal bundle stability in the peritrichously flagel-

lated Salmonella typhimurium [20�]. When acting as a

universal joint, the elements of the hook undergo confor-

mation changes during rotation to accommodate the

orientation of the filament. By contrast, Duchesne et al.
inferred that the hook of confined Salmonella cells can

lock into a fixed conformation when switching to CW

rotation and swing a filament around the cell [21]

(Figure 2b). The observed motion looks similar to the

rolling of flagellar filaments to the opposite pole of an E.
coli cell sandwiched to 2D as reported by Wu et al., but the
Current Opinion in Microbiology 2021, 61:73–81 
latter occurs via hydrodynamic interactions with one of

the surfaces during continuous CCW rotation and does

not require any unusual action of the hook [22]

(Figure 2c). Both mechanisms enable the cell to reverse

direction and escape a dead end.

Flagellar wrapping
In 2017, multiple groups independently reported a new

mode of motility whereby the flagellum wraps around the

cell body, like threading on a screw, during locomotion

with the flagellated pole leading. Kühn et al. observed that

the polar monotrichous species S. putrefaciens, which

normally performs run-reverse-flick motility in liquid

medium [13], can wrap its filament around the cell when

mechanically trapped or placed in high viscosity environ-

ments [23��]. Hintsche et al. observed flagella pushing,

pulling, and wrapping around the cell in the lophotri-

chously flagellated Pseudomonas putida [24��] (Figure 3a).

Kinosita et al. observed the wrapping behavior in two

other lophotrichous species, Burkholderia sp. RPE64 and
www.sciencedirect.com
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Figure 2

(a)

(b)

(c)

rear view

LH flagellum
cell body

surface

top view

obstacle

flagellar rolling

hook lockingswimming:
hook acts as universal joint

hook
buckles

hook
compressed

hook
stretched

hook
twists

twisted 
hook
stiffens

run-reverse-flick
pattern

21 543

flick

flicking

obstacle

Current Opinion in Microbiology

Novel reorientation mechanisms. (a) The flick observed in polar monotrichous species such as V. alginolyticus [9��,14��]. The flagellar hook is

stretched out during pulling (1), but is compressed when the flagellum changes rotation direction and pushes the cell (2). The hook buckles,

producing a kink between the flagellum and the cell body (3). The flagellum keeps pushing the cell body sideways, turning it, while gaining rigidity

as it is being twisted (4). The stiffened hook can then support swimming in pushing mode (5). The time between the motor switching rotation

direction and the reorientation is only approximately 10 ms [14��]. (b) Reorientation of stuck bacteria by the hook locking mechanism proposed by

Duchesne et al. [21]. During swimming, rotation of the flagellar filament about its axis is achieved by conformational changes of the elements of

the rotating hook (compression on the inner and extension on the outer side of the bend). By contrast, during the proposed reorientation

mechanism, each element of the hook retains its compressed or extended conformation during rotation so that the hook’s bend rotates around,

swinging the filament to the other side of the cell. Elements of the hook are assigned fixed colors (yellow to red). (c) On a surface, E. coli mutants

that can only rotate their left-handed flagella CCW and cannot turn during free swimming can nevertheless re-orient when encountering an

obstacle by rolling their flagella along the surface to the opposite pole of the cell [22].

www.sciencedirect.com Current Opinion in Microbiology 2021, 61:73–81
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Figure 3
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Flagellar wrapping. (a) Transitions between flagellar conformations observed in P. putida [24��]. When the flagella bundle switches from CCW to

CW rotation, it can pull the cell or transition onward into a wrapped state. In both cases, the cell moves with the flagellated pole leading. The

wrapped state differs in polymorphic conformation from the pushing and pulling states. The flagella are left-handed in all three states but may

partially change handedness transiently during the transition from pulling to wrapped [23��,25��]. (b) Flagellar conformations observed in the bipolar

lophotrichous H. suis [26]. (c) Wrapping may aid bacteria escape from traps. When a swimming bacterium (1) becomes trapped (2), for example,

by a polymer network, such that neither pushing (2–3) or pulling (4–5) is sufficient for freeing it, escape may be facilitated by the flagellum

transitioning into the wrapped state (6), removing the cell from the trap by a screw-like motion (7–9) [23��,30,32��].
Vibrio fischeri [25��]. Flagellar wrapping has since also been

observed in the bipolar lophotrichous Helicobacter suis [26]

(Figure 3b) as well as the amphitrichous Campylobacter
jejuni [27]. Previous observations of a ‘parachute’ arrange-

ment of flagella in the amphitrichous Magnetospirillum
magneticum [28] likely also represent wrapping.

In the wrapped state, the flagellar handedness, direction

of motor rotation, and direction of travel are identical to

that observed for an extended, pulling flagellum

[23��,25��]. Intriguingly, wrapping decreases the free-

swimming speed in aquatic environments compared to

the pulling mode [23��,24��,29], but the probability of

flagellar wrapping increases with the viscosity of the

surrounding medium [23��,25��,26]. Cells that are trapped

between two surfaces, such as glass and an agar pad,

however, can free themselves by rotating the wrapped

flagellum around themselves and moving without slip like

a screw [23��]. Kühn et al. thus propose that wrapping
Current Opinion in Microbiology 2021, 61:73–81 
might present a mechanism for escaping traps (Figure 3c)

[23��,30].

The wrapped configuration is driven by polymorphic

transitions of the flagellar filament [23��,25��]. While such

polymorphism also exists in flagella of uniform composi-

tion [31], wrapping requires a specific composition of

different flagellins in S. putrefaciens [32��] and C. jejuni
[27], and many of the above species seem to encode

multiple flagellins [33].

Flagellar architectures
The contrasting patterns of run-tumble motility for perit-

richous species and run-reverse-flick motility for many

polar monotrichous species set the stage for a more

systematic analysis of the relationship between flagellar

architecture and the resulting motility pattern. In partic-

ular, lophotrichous bacteria, driven by the rotation of tufts

of flagella, have received more attention in recent years.
www.sciencedirect.com
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Theves et al. found that P. putida shows run-reverse

motility with runs alternating between two different

swimming speeds [34]. The slower speed was later attrib-

uted to the wrapped mode by Hintsche et al. who

observed pushing, pulling, and wrapping behavior

[24��]. Pulling by a flagellar bundle had also been

observed in Helicobacter pylori [35]. The configuration

had been thought to be mechanically unstable [36,37],

and more recent work indicates that this may be a short-

lived state in P. putida [29]. Lophotrichous flagella can

support extremely high swimming speeds. Speeds of

hundreds of mm/s were observed in the magnetotactic

species Magnetococcus massalia and Magnetococcus marinus
which are propelled by two sheathed tufts [38,39], and for

Ovobacter propellens, propelled by a bundle of hundreds of

flagella, speeds of 1 mm/s have been reported [40]. The

rich space of states and transitions available to species

with two sets of flagella at different positions is only

beginning to be explored [26,28,38] (Figure 3b).
Table 1

A summary of reported bacterial motility patterns and behaviors, ord

refer to pertinent reviews.

Flagellar architecture Species 

Peritrichous
Escherichia coli [63] 

Salmonella enterica serovar

typhimurium [63]

Bacillus subtilis 

Serratia marcescens 

Sinorhizobium meliloti [67] 

Bradyrhizobium lupini 

Thiovulum majus 

Subpolar monotrichous Rhodobacter sphaeroides [67] 

Polar monotrichous Vibrio alginolyticus 

Vibrio cholerae 

Shewanella putrefaciens 

Pseudomonas aeruginosa 

Azospirillum brasilense 

Caulobacter crescentus 

Pseudomonas fluorescens 

Amphitrichous (one at

each pole)

Campylobacter jejuni [70] 

Magnetospirillum magneticum [72] 

Lophotrichous (flagellar tuft)
Pseudomonas putida 

Helicobacter pylori [70] 

Burkholderia sp. RPE64 

Vibrio fischeri 

Candidatus Ovobacter propellens 

Sheathed bilophotrichous

(two sheathed tufts)

Magnetococcus marinus [72] 

Magnetococcus massalia [72] 

Bipolar lophotrichous (one tuft

at each pole)

Helicobacter suis 

Dual flagellar architecture:

single polar + lateral

Shewanella putrefaciens 

Bradyrhizobium diazoefficiens 

Magnetoglobules isolates from the Mediterranean [72] 

www.sciencedirect.com 
Some species even modify their flagellar architectures on

demand. Ferreira et al. discovered that a range of g-pro-
teobacteria, including V. cholerae, V. fischeri, S. putrefaciens,
and Pseudomonas aeruginosa, eject flagella under nutrient

depletion [41]. Species like Vibrio parahaemolyticus, in

turn, express additional peritrichous lateral flagella under

conditions that impede the rotation of its single polar

flagellum [42]. Lateral flagella can facilitate surface

swarming [43], but can also increase swimming speeds

in polymer solutions [44]. Bubendorfer et al. reported an

additional role of lateral flagella: in Shewanella putrefaciens,
which performs run-reverse-flick motility powered by its

polar flagellum, the additional presence of lateral flagella

increases drag which decreases flick angles, resulting in a

higher chemotactic speed [13].

An open question is whether and how flagella interact

with each other. How lophotrichous bacteria synchronize

the rotation direction of their bundled flagella is
ered by flagellar architectures. References in the second column

Motility pattern Notes

Run-tumble [5]
Hook locking [21]

Roll [22]

Run-tumble [64] Hook locking [21]

Run-tumble [65]

Run-tumble [66]

Run-desynchronize [7]

Run-pause [68]

Fast helical runs with

U-turns [46]

Large cells with many flagella [46]

Run-pause [6] Flagella coil during pause [6]

Run-reverse-flick [9��] Flicking [9��,14��]
Run-reverse-flick

(Grognot et al., unpublished)

Fluctuating swimming speed

(Grognot et al., unpublished)

Run-reverse-flick [13] Flagellar wrapping [23��,32��]
Run-reverse [52] Pauses during runs [52,55]

Run-reverse [53]
Pauses during runs [53].

Flicks? [53]

Run-reverse-flick [12]

Run-reverse [69] Pauses during runs, ‘flips’ [69]

Run-reverse [71] Flagellar wrapping [27]

Run-reverse [28] Pauses during runs. Wrapping? [28]

Run-reverse [34]
Pauses during runs [34]

Wrapping [24��]
Run-reverse [35]

Wrapping [25��]
Wrapping [25��]

Run-reverse? [40] Tuft contains hundreds of flagella [40]

Fast helical runs with

sudden turns [38]

Straight swimming

northward [73]

Wrapping [26]

Run-reverse-flick [13] Lateral flagella modify flick angle [13]

Run-reverse-flick [74]

Run-reverse [47] Aligned with magnetic north-south

axis [47]

Current Opinion in Microbiology 2021, 61:73–81
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unknown. Although several studies have proposed that

flagella at the opposite ends of amphitrichous cells coor-

dinate their behavior [27,28,38,45], that notion has not

been supported by a statistical analysis so far. It is also

unknown how the many flagella on the large Thiovulum
majus cells orchestrate their U-turns [46], or how the

thousands of flagella that line multicellular magnetotactic

bacteria, so-called magnetoglobules, coordinate their run-

reverse motility [47].

Table 1 summarizes bacterial motility behaviors observed

for specific flagellar architectures. Future work will reveal

whether this nascent structure-function map linking bac-

terial flagellar architectures to the resulting motility beha-

viors also translates to archaea. Archaeal flagella, also

called archaella, are mechanically similar to bacterial

flagella, but consist of unrelated proteins [48,49]. Initial

studies of archaeal swimming behavior indicate run-

reverse motility at speeds that vary from only a few

mm/s to hundreds of mm/s [50,51]. Archaea present an

intriguing opportunity to determine whether the mechan-

ical principles that govern bacterial swimming behaviors

are conserved across domains of life. Public databases

collating observations such the recently established col-

lection of physical parameters of microscopic swimmers

(BOSO-Micro, https://osf.io/4tyx6/) could contribute to

systematic investigations.

Flagellar pausing and speed variations
Pauses in swimming [34,52,53] or flagellar rotation

[6,54,55] are being reported for an increasing number

of species. In Rhodobacter sphaeroides, pauses in the rota-

tion of its unidirectional motor drive turning events by

allowing flagellar polymorphic transitions that enable a

larger degree of rotational reorientation than is possible

during locomotion [6,56]. The function of pausing is less

clear in other species. Because bacteria infer spatial

gradients from temporal gradients, a pause in locomotion

should result in a decrease in information whose adaptive

value is hard to fathom.

In addition, flagellar rotation speeds are variable and can

even be controlled by the chemotaxis system in some

species, such as Sinorhizobium meliloti [7] and V. alginoly-
ticus [57]. Future work will need to address whether and

how speed variations, pausing, and direction switching of

the flagellar motor are related to each other and how they

contribute to chemotaxis.

Conclusions
The recent discoveries of new motility behaviors partic-

ularly in polarly flagellated and lophotrichous bacteria

complement the large body of work on peritrichously

flagellated species like E. coli. Novel, label-free, high-

throughput 3D tracking techniques [58–60] are opening

up the possibility of routine characterization full 3D

swimming behaviors in large bacterial populations that
Current Opinion in Microbiology 2021, 61:73–81 
will enable us to increasingly fill in the map between

flagellar architectures and the resulting repertoire of

motility behaviors.

The last decade has revealed a versatility in flagellar

functions that extends well beyond acting as simple

propellers: During a flick, the alignment of flagellum

and cell body is modified to facilitate a cellular reorienta-

tion — the propeller becomes a steering device. During

the flagellar wrapping, the shape of the flagellar filament

changes drastically and the propeller reshapes itself from

a corkscrew to a threaded-screw geometry.

Some of the newly discovered behaviors only become

apparent or beneficial in complex environments, such as

near surfaces, in confinement, or in viscous or structured

environments. While much bacterial motility work has

focused on swimming behavior in aquatic environments,

it is increasingly appreciated that such behavior may both

vary with the environment and be adapted to specific

types of habitats.

A crucial open question is whether and how many of the

newly discovered behaviors contribute to chemotaxis or

maybe even are controlled by the chemotaxis system.

Novel high-throughput motility and chemotaxis assays

[61] (Grognot et al., doi:10.21203/rs.3.rs-61942/v1) may be

able to help shed light on this question. In E. coli,
information on the temporal evolution of the extracellular

chemical concentration is integrated by the chemosen-

sory system into the concentration of phosphorylated

CheY ([CheY-P]), the chemotaxis response regulator.

[CheY-P] binding to the motor then determines the

probability of tumble-inducing CW rotation, the so-called

CW bias. E. coli’s chemotactic strategy is widely assumed

to translate to other species. Pioneering work in V. algi-
nolyticus [62�], however, has revealed a different strategy:

instead of biasing the rotation direction, chemosensory

input modifies the duration of the current rotation interval

regardless of its direction. Different hardware may

require different software. In V. alginolyticus, and likely

in most species aside from peritrichous ones, both flagel-

lar rotation directions produce locomotion. Recent work

has found similar behavior also in other polar monotri-

chous species, Pseudomonas aeruginosa [52] and Caulobac-
ter crescentus (Grognot et al., doi:10.21203/rs.3.rs-61942/v1).

We suggest that this strategy may even be more wide-

spread. In particular, it would resolve a conundrum in the

chemotactic behavior of amphitrichous species that have

flagella at both cell poles. For these cells to move effec-

tively, the flagella on opposite ends of the cells have to

rotate in opposite directions. In the E. coli paradigm,

however, chemotactic signals would bias the rotation

direction of both flagella to favor the same state, resulting

in their actions opposing each other. To explain how the

two flagella instead appear to coordinate their rotation
www.sciencedirect.com
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directions, it has been proposed that motors on opposite

ends of the cell may be different from each other [11,27].

The conundrum is resolved, however, if we assume that

V. alginolyticus’s chemotactic strategy applies: both flagella

would be biased to retain or change their state, irrespec-

tive of its identity. Finally, we propose a unified behav-

ioral strategy that encompasses both of the above

schemes: whatever works, keep doing it!
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